Minggu, 06 Maret 2011

Radiasi elektromagnetik sinar putih dalam sebuah prisma (optik) yang terurai menjadi beberapa warna cahaya yang terpisah

   Radiasi elektromagnetik adalah kombinasi medan listrik dan medan magnet yang berosilasi dan merambat lewat ruang dan membawa energi dari satu tempat ke tempat yang lain. Cahaya tampak adalah salah satu bentuk radiasi elektromagnetik. Penelitian teoritis tentang radiasi elektromagnetik disebut elektrodinamik, sub-bidang elektromagnetisme.
Gelombang elektromagnetik ditemukan oleh Heinrich Hertz. Gelombang elektromagnetik termasuk gelombang transversal.
Setiap muatan listrik yang memiliki percepatan memancarkan radiasi elektromagnetik. Waktu kawat (atau panghantar seperti antena) menghantarkan arus bolak-balik, radiasi elektromagnetik dirambatkan pada frekuensi yang sama dengan arus listrik. Bergantung pada situasi, gelombang elektromagnetik dapat bersifat seperti gelombang atau seperti partikel. Sebagai gelombang, dicirikan oleh kecepatan (kecepatan cahaya), panjang gelombang, dan frekuensi. Kalau dipertimbangkan sebagai partikel, mereka diketahui sebagai foton, dan masing-masing mempunyai energi berhubungan dengan frekuensi gelombang ditunjukan oleh hubungan Planck E = Hf, di mana E adalah energi foton, h ialah konstanta Planck — 6.626 × 10 −34 J·s — dan f adalah frekuensi gelombang.
Einstein kemudian memperbarui rumus ini menjadi Ephoton = hf.

Gelombang elektromagnetik

Yang termasuk gelombang elektromagnetik
Gelombang Panjang gelombang λ
gelombang radio 1 mm-10.000 km
infra merah 0,001-1 mm
cahaya tampak 400-720 nm
ultra violet 10-400nm
sinar X 0,01-10 nm
sinar gamma 0,0001-0,1 nm
Sinar kosmis tidak termasuk gelombang elektromagnetik; panjang gelombang lebih kecil dari 0,0001 nm.
Sinar dengan panjang gelombang besar, yaitu gelombang radio dan infra merah, mempunyai frekuensi dan tingkat energi yang lebih rendah. Sinar dengan panjang gelombang kecil, ultra violet, sinar x atau sinar rontgen, dan sinar gamma, mempunyai frekuensi dan tingkat energi yang lebih tinggi.

Molekul



Penggambaran tiga dimensi (kiri dan tengah) berserta dua dimensi (kanan) molekul terpenoid atisana.

   Molekul didefinisikan sebagai sekelompok atom (paling sedikit dua) yang saling berikatan dengan sangat kuat (kovalen) dalam susunan tertentu dan bermuatan netral serta cukup stabil.[1][2] Menurut definisi ini, molekul berbeda dengan ion poliatomik. Dalam kimia organik dan biokimia, istilah molekul digunakan secara kurang kaku, sehingga molekul organik dan biomolekul bermuatan pun dianggap termasuk molekul.
Dalam teori kinetika gas, istilah molekul sering digunakan untuk merujuk pada partikel gas apapun tanpa bergantung pada komposisinya.[3] Menurut definisi ini, atom-atom gas mulia dianggap sebagai molekul walaupun gas-gas tersebut terdiri dari atom tunggal yang tak berikatan.[4]
Sebuah molekul dapat terdiri atom-atom yang berunsur sama (misalnya oksigen O2), ataupun terdiri dari unsur-unsur berbeda (misalnya air H2O). Atom-atom dan kompleks yang berhubungan secara non-kovalen (misalnya terikat oleh ikatan hidrogen dan ikatan ion) secara umum tidak dianggap sebagai satu molekul tunggal.
Katrol tetap

   Katrol adalah suatu roda dengan bagian berongga di sepanjang sisinya untuk tempat tali atau kabel. Katrol biasanya digunakan dalam suatu rangkaian yang dirancang untuk mengurangi jumlah gaya yang dibutuhkan untuk mengangkat suatu beban. Walaupun demikian, jumlah usaha yang dilakukan untuk membuat beban tersebut mencapai tinggi yang sama adalah sama dengan yang diperlukan tanpa menggunakan katrol. Besarnya gaya memang dikurangi, tapi gaya tersebut harus bekerja atas jarak yang lebih jauh. Usaha yang diperlukan untuk mengangkat suatu beban secara kasar sama dengan berat beban dibagi jumlah roda. Semakin banyak roda yang ada, sistem semakin tidak efisien karena akan timbul lebih banyak gesekan antara tali dan roa. Katrol adalah salah satu dari enam jenis pesawat sederhana.
Tidak ditemukan catatan mengenai kapan dan oleh siapa katrol pertama kali dikembangkan, tapi kemugkinan besar berasal dari Eurasia. Bagian dasar pembentuk sistem katrol, roda, ditemukan beberapa waktu setelah penemuan di di Eurasia pada masyarakat di belahan barat, Afrika sub-Sahara, dan Australia. Dipercayai juga bahwa Archimedes mengembangkan rangkaian sistem katrol pertama, sebagai mana dicatat oleh Plutarch.

RUMUS KATROL
Katrol tetap KM = 1
Katrol bergerak KM = 2
Katrol majemuk KM = n (n=jumlah katrol)
KM= Keuntungan Mekanik

Pemuaian

pemuaian-a
Pada saat suhu benda = To (benda masih dingin), panjang benda = Lo. Pada saat suhu benda = T (benda kepanasan), panjang benda = L. Sambil perhatikan gambar ya… Berdasarkan hasil pengamatan dan percobaan, perubahan panjang benda sebanding dengan perubahan suhu. Jika suhu semakin meningkat, panjang benda juga semakin bertambah. Sebaliknya ketika suhu menurun, panjang benda juga ikut2an berkurang.
Perubahan panjang suatu benda juga sebanding dengan panjang benda mula-mula (Lo). Maksudnya kalau besar perubahan suhu sama, benda yang panjangnya 10 meter, misalnya, akan mengalami perubahan panjang 2x lipat dibandingkan dengan benda yang panjangnya hanya 5 meter. Jadi semakin panjang benda, semakin besar pemuaian benda tersebut. Sebaliknya, semakin pendek suatu benda, semakin kecil pemuaian yang dialami benda tersebut.
Untuk membantu kita meramalkan perubahan panjang suatu benda akibat adanya perubahan suhu, alangkah baiknya jika kita menurunkan persamaan pemuaian panjang.
Pertama, perubahan panjang benda (delta L) sebanding dengan perubahan suhu (delta T). Secara matematis bisa ditulis seperti ini :
pemuaian-bKedua, perubahan panjang benda (delta L) sebanding dengan panjang benda mula-mula (Lo). Secara matematis bisa ditulis seperti ini :
pemuaian-cKetiga, perubahan panjang untuk setiap benda ternyata berbeda-beda. Walaupun besar perubahan suhu sama, pemuaian yang dialami besi tidak sama dengan kaca. Demikian juga dengan benda yang lain. Jadi pemuaian panjang ternyata bergantung pada koofisien muai panjang setiap benda. Koofisien muai panjang untuk setiap benda diperoleh melalui percobaan (tuh ada tabel koofisien muai panjang benda di bawah). Semakin besar koofisien muai panjang, semakin besar pertambahan panjang. Sebaliknya semakin kecil koofisien muai panjang, semakin kecil pertambahan panjang. Kita bisa mengatakan bahwa perubahan panjang benda sebanding dengan koofisien muai panjang. Secara matematis bisa ditulis seperti :
pemuaian-dKetiga perbandingan di atas bisa ditulis kembali menjadi seperti di bawah :
pemuaian-ePersamaan 1 bisa digunakan untuk menentukan perubahan panjang suatu benda akibat adanya perubahan suhu. Nilai koofisien muai panjang untuk benda padat bisa dilihat pada tabel di bawah.
Sekarang kita oprek persamaan 1 untuk memperoleh persamaan koofisien muai panjang.
pemuaian-fPersamaan 2 bisa digunakan untuk menentukan koofisien muai panjang suatu benda.
Keterangan :
pemuaian-g
Panjang total sebuah benda setelah mengalami pemuaian atau penyusutan, bisa kita peroleh dengan menjumlahkan panjang benda mula-mula (Lo) dan perubahan panjang benda (delta L).
pemuaian-h

Keterangan :
pemuaian-i
Catatan :
Apabila perubahan suhu (T-To) bernilai negatif, maka perubahan panjang (L-Lo) juga bernilai negatif. Dalam hal ini panjang benda berkurang. Sebaliknya jika perubahan suhu (T-To) bernilai positif, maka perubahan panjang (L-Lo) juga bernilai positif. Dalam hal ini benda bertambah panjang….
Berikut ini data koofisien muai panjang benda padat, pada suhu 20 oC. Bentuk zat cair dan zat gas berubah2 sehingga kedua jenis zat ini tidak bisa mengalami pemuaian panjang. Koofisien muai panjang benda padat bergantung juga pada suhu alias temperatur. Pada suhu yang berbeda, koofisien muai panjang benda padat juga berbeda2. Btw, jika perbedaan suhu tidak terlalu besar maka perbedaan koofisien muai panjang juga tidak terlalu besar, karenanya bisa diabaikan.
Benda PadatKoofisien muai panjang ( K-1 atau (Co)-1 )
Timah hitam29 x 10-6
Aluminium24 x 10-6
Kuningan19 x 10-6
Tembaga17 x 10-6
Besi atau Baja12 x 10-6
Beton dan BataMendekati 12 x 10-6
Kaca (Biasa)9 x 10-6
Grafit7,9 x 10-6
Kaca (Pyrex)3 x 10-6
Marmer1,4 – 3,5 x 10-6
Intan1,2 x 10-6
Invar (Paduan besi – nikel)0,9 x 10-6
Kwarsa0,4 x 10-6

Tambahan :
Kalau dirimu bingung satuan koofisien muai panjang tuh asalnya dari mana, pahami penjelasan gurumuda berikut ini. Kita bisa menurunkan satuan koofisien muai panjang menggunakan persamaan koofisien muai panjang (Persamaan 2)

pemuaian-jKita gunakan satuan Sistem Internasional. Ingat ya, interval atau jarak antara setiap skala pada skala Kelvin dan skala Celcius tuh sama. Karenanya, selain menggunakan K-1 sebagai satuan koofisien muai panjang, kita juga bisa menggunakan (Co)-1. Sama saja…. Oya, hubungan antara skala Kelvin dan Skala Celcius bisa dibaca di postingan Termometer dan Skala Suhu (di bagian akhir postingan). Sudah gurumuda muat di blog ini…..
Contoh soal 1 :
Sebuah besi panjangnya = 10 meter. Berapakah pertambahan panjang besi jika suhu berubah dari 40oC menjadi 60oC ?
Panduan jawaban :
Panjang besi mula-mula (Lo) = 10 meter
Suhu awal (To) = 40 oC
Suhu akhir (T) = 60 oC
Perubahan suhu = T – To = 60 oC – 40 oC = 20 Co
Koofisien muai panjang besi = 12 x 10-6 (Co)-1 (lihat tabel di atas)
Sekarang kita tentukan besar pertambahan panjang besi :

pemuaian-k
Guampang….
Contoh soal 2 :
Pada suhu 40 oC, panjang sebuah kawat tembaga = 100 meter. Jika suhu meningkat menjadi 60 oC, kawat tersebut memuai (bertambah panjang). Berapakah panjang total kawat tersebut setelah memuai ?
Panduan jawaban :
Panjang kawat tembaga mula-mula (Lo) = 100 meter
Suhu awal (To) = 40 oC
Suhu akhir (T) = 60 oC
Perubahan suhu = T – To = 60 oC – 40 oC = 20 Co
Koofisien muai panjang tembaga = 17 x 10-6 (Co)-1 (lihat tabel di atas)
Ingat ya, yang ditanyakan adalah panjang total kawat (panjang mula2 + pertambahan panjang). Kita punya 2 pilihan….
Pertama, langsung menggunakan persamaan panjang total (persamaan 3) untuk menghitung panjang total kawat, atau
Kedua, menghitung terlebih dahulu pertambahan panjang kawat (persamaan 2). Setelah memperoleh pertambahan panjang kawat, baru kita jumlahkan dengan panjang kawat mula-mula.
Banyak jalan menuju roma, banyak cara mengoprek soal. Gurumuda pakai persamaan 2 cara saja, biar dirimu paham….. btw, dirimu jangan hafal tuh persamaan ya… pahami saja cara penurunannya, terus sering2 latihan soal biar otomatis diingat. Ok, tancap gas….
Cara 1 :

pemuaian-lCara 2 :
pemuaian-m

Wah, ternyata hasilnya sama…… Panjang total kawat tembaga = 100,034 meter
Catatan :
Seperti yang sudah gurumuda jelaskan pada postingan Termometer dan Skala Suhu, jika kita menyebut besar suhu maka kita menggunakan derajat celcius (oC). Sebaliknya, kalau kita menyebut selisih atau perubahan suhu maka kita menggunakan Celcius Derajat (Co).
Contoh :
Mula-mula, suhu kawat tembaga = 30 oC. Setelah dipanaskan, suhu kawat tembaga menjadi 60 oC. Perubahan suhu kawat tembaga = 60 oC – 30 oC = 30 Co (30 Celcius derajat). Biar paham, perhatikan lagi contoh soal di atas atau di bawah….
Contoh soal 3 :
Pada suhu 60 oC, panjang sebuah kawat besi = 100 meter. Berapakah panjang besi tersebut jika suhu berkurang menjadi 40 oC ?
Panduan Jawaban :
Panjang besi mula-mula (Lo) = 100 meter
Suhu awal (To) = 60 oC
Suhu akhir (T) = 40 oC
Perubahan suhu = T – To = 40 oC – 60 oC = -20 Co
Koofisien muai panjang besi = 12 x 10-6 (Co)-1 (lihat tabel di atas)
Gurumuda pakai cara panjang saja… Ok, tancap gas… Panjang kawat besi = panjang mula2 + perubahan panjang kawat
pemuaian-n
Ternyata panjang kawat besi berkurang. Kawat besi memendek karena suhunya menurun.

Pemuaian Volume
Sebelumnya kita sudah mempelajari pemuaian panjang. Kali ini kita akan membahas pemuaian volume. Kalau pemuaian panjang kebanyakan dialami oleh benda padat, maka pemuaian volume dialami oleh semua benda/zat, baik padat, cair maupun gas… biar tidak kelamaan, kita langsung menurunkan persamaan yang menyatakan hubungan antara perubahan suhu dengan besarnya pemuaian volume yang dialami benda. Btw, dirimu ngerti volume khan ? volume kubus, volume balok dkk…. ingat lagi pelajaran SD dan SMP…. Lanjut ya…
Persamaan pemuaian volume mirip dengan persamaan pemuaian panjang. Cuma beda tipis… Gurumuda tulis rumus pemuaian panjang dulu ya….
pemuaian-oSekarang mari kita oprek persamaan pemuaian panjang menjadi persamaan pemuaian volume. Gantikan lambang panjang (L) pada persamaan di atas dengan lambang volume (V). Koofisien muai panjang diganti dengan koofisien muai volume.

pemuaian-pBiar paham, bandingkan 3 persamaan ini dengan 3 persamaan di atas….
Keterangan :
pemuaian-q
Benda Koofisien muai volume( K-1 atau (Co)-1 )
PadatTimah hitam87 x 10-6
Aluminium75 x 10-6
Kuningan56 x 10-6
Tembaga51 x 10-6
Besi atau Baja36 x 10-6
Beton dan BataMendekati 36 x 10-6
Kaca (Biasa)27 x 10-6
Grafit23,7 x 10-6
Kaca (Pyrex)9 x 10-6
Marmer4 – 10 x 10-6
Intan3,6 x 10-6
Invar (Paduan besi – nikel)2,7 x 10-6
Kwarsa1 x 10-6
CairKarbon disulfida1150 x 10-6
Ethyl alkohol1100 x 10-6
Bensin950 x 10-6
Etanol750 x 10-6
Gliserin500 x 10-6
Air210 x 10-6
Air Raksa180 x 10-6
GasUdara3400 x 10-6

Selasa, 01 Maret 2011

Usaha dan Energi

Dalam kehidupan sehari-hari dirimu pasti sering mendengar atau menggunakan kata “usaha” dan “energi”. Kata “usaha” yang sering kita gunakan dalam kehidupan sehari-hari memiliki makna yang berbeda dengan pengertian usaha dalam fisika. Pada kesempitan ini kita akan belajar pokok bahasan usaha dan energi. Pokok bahasan Usaha dan Energi yang telah anda pelajari di SMP masih bersifat kualitatif dan mungkin sekarang dirimu sudah melupakan semuanya ;) . Oleh karena itu gurumuda mencoba membantu dirimu memahami kembali (syukur kalo masih diingat) konsep Usaha dan Energi secara lebih mendalam dan tentu saja disertai juga dengan penjelasan kuantitatif (ada rumusnya). Akhirnya, semoga dirimu tidak berkecil hati, apalagi sampai kecewa dan putus asa karena ada rumus. Pahamilah dengan baik dan benar konsep Usaha dan Energi yang dijelaskan, maka dirimu tidak akan meringis ketika menatap rumus… selamat belajar ya, semoga sukses sampai di tujuan :)
Pada pokok bahasan fisika sebelumnya, kita telah belajar tentang gerak benda dan hubungannya dengan Gaya yang mempengaruhi gerak benda (Hukum Newton tentang Gerak). Kali ini kita menganalisis gerak benda dalam kaitannya dengan Usaha dan Energi. Usaha dan Energi merupakan besaran skalar sehingga analisis kita menjadi lebih mudah dibandingkan dengan ketika kita mempelajari gaya. Konsep usaha dan energi sangat penting, sehingga sangat dianjurkan supaya dipelajari dengan penuh semangat.
USAHA
Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.
Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang searah dengan perpindahan.
usaha dan kerja-02
Persamaan matematisnya adalah :
W = Fs cos 0 = Fs (1) = Fs
W adalah usaha alias kerja, F adalah besar gaya yang searah dengan perpindahan dan s adalah besar perpindahan.
Apabila gaya konstan tidak searah dengan perpindahan, sebagaimana tampak pada gambar di bawah, maka usaha yang dilakukan oleh gaya pada benda didefinisikan sebagai perkalian antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Komponen gaya yang searah dengan perpindahan adalah F cos teta
usaha dan kerja-01
Secara matematis dirumuskan sebagai berikut :
usaha dan energi
Hasil perkalian antara besar gaya (F) dan besar perpindahan (s) di atas merupakan bentuk perkalian titik atau perkalian skalar. Karenanya usaha masuk dalam kategori besaran skalar. Pelajari lagi perkalian  vektor dan skalar kalau dirimu bingun… Persamaan di atas bisa ditulis dalam bentuk seperti ini :usaha dan kerja
Satuan Usaha dalam Sistem Internasional (SI) adalah newton-meter. Satuan newton-meter juga biasa disebut Joule ( 1 Joule = 1 N.m). menggunakan sistem CGS (Centimeter Gram Sekon), satuan usaha disebut erg. 1 erg = 1 dyne.cm. Dalam sistem British, usaha diukur dalam foot-pound (kaki-pon). 1 Joule = 107 erg = 0,7376 ft.lb.
Perlu anda pahami dengan baik bahwa sebuah gaya melakukan usaha apabila benda yang dikenai gaya mengalami perpindahan. Jika benda tidak berpindah tempat maka gaya tidak melakukan usaha. Agar memudahkan pemahaman anda, bayangkanlah anda sedang menenteng buku sambil diam di tempat. Walaupun anda memberikan gaya pada buku tersebut, sebenarnya anda tidak melakukan usaha karena buku tidak melakukan perpindahan. Ketika anda menenteng atau menjinjing buku sambil berjalan lurus ke depan, ke belakang atau ke samping, anda juga tidak melakukan usaha pada buku. Pada saat menenteng buku atau menjinjing tas, arah gaya yang diberikan ke atas, tegak lurus dengan arah perpindahan. Karena tegak lurus maka sudut yang dibentuk adalah 90o. Cos 90o = 0, karenanya berdasarkan persamaan di atas, nilai usaha sama dengan nol. Contoh lain adalah ketika dirimu mendorong tembok sampai puyeng… jika tembok tidak berpindah tempat maka walaupun anda mendorong sampai banjir keringat, anda tidak melakukan usaha. Kita dapat menyimpulkan bahwa sebuah gaya tidak melakukan usaha apabila gaya tidak menghasilkan perpindahan dan arah gaya tegak lurus dengan arah perpindahan.
Contoh Soal 1 :
Sebuah peti kemas bermassa 50 kg yang terletak pada lantai ditarik horisontal sejauh 2 meter dengan gaya 100 N oleh seorang buruh pelabuhan. Lantai tersebut agak kasar sehingga gaya gesekan yang diberikan pada karung beras sebesar 50 N. Hitunglah usaha total yang dilakukan terhadap karung berisi beras tersebut…
usaha dan energi - 466
Panduan jawaban :
Sebelum menghitung usaha total, terlebih dahulu kita hitung usaha yang dilakukan oleh buruh karung dan usaha yang dilakukan oleh gaya gesekan. Kita tetapkan arah kanan bertanda positif sedangkan arah kiri negatif. (b = buruh, Fg = gaya gesekan, N = gaya normal, w = berat). Gaya gesekan berlawanan arah dengan arah gerakan benda sehingga bertanda negatif.
Pada soal di atas, terdapat empat gaya yang bekerja pada peti kemas, yakni gaya tarik buruh (searah dengan perpindahan peti kemas), gaya gesekan (berlawanan arah dengan perpindahan peti), gaya berat dan gaya normal (tegak lurus arah perpindahan, sudut yang terbentuk adalah 90o).
Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya tersebut.
Usaha yang dilakukan oleh buruh pelabuhan :
Wb = Fb.s = (100 N) (2 m) = 200 N.m
Usaha yang dilakukan oleh Gaya gesekan :
Wg = Fg.s =- (50 N) (2 m) = -100 N.m
Usaha yang dilakukan oleh gaya berat :
Ww = Fw.s = (mg) (2 m) cos 90o = 0
Usaha yang dilakukan oleh gaya normal :
WN = FN.s = (mg) (2 m) cos 90o = 0
Usaha total = Wb + Wg + Ww + WN = (200 N.m) + (-100 N.m) + 0 + 0 = 100 N.m = 100 Joule

Bunyi

Bunyi atau suara adalah kompresi mekanikal atau gelombang longitudinal yang merambat melalui medium. Medium atau zat perantara ini dapat berupa zat cair, padat, gas. Jadi, gelombang bunyi dapat merambat misalnya di dalam air, batu bara, atau udara.
Kebanyakan suara adalah merupakan gabungan berbagai sinyal, tetapi suara murni secara teoritis dapat dijelaskan dengan kecepatan osilasi atau frekuensi yang diukur dalam Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam desibel.
Manusia mendengar bunyi saat gelombang bunyi, yaitu getaran di udara atau medium lain, sampai ke gendang telinga manusia. Batas frekuensi bunyi yang dapat didengar oleh telinga manusia kira-kira dari 20 Hz sampai 20 kHz pada amplitudo umum dengan berbagai variasi dalam kurva responsnya. Suara di atas 20 kHz disebut ultrasonik dan di bawah 20 Hz disebut infrasonik.

Kenyaringan dan desibel

Bunyi kereta lebih nyaring daripada bunyi bisikan, sebab bunyi kereta menghasilkan getaran lebih besar di udara. Kenyaringan bunyi juga bergantung pada jarak kita ke sumber bunyi. Kenyaringan diukur dalam satuan desibel (dB). Bunyi pesawat jet yang lepas landas mencapai sekitar 120 dB. Sedang bunyi desiran daun sekitar 33 dB.
Kebanyakan suara adalah merupakan gabungan berbagai sinyal, tetapi suara murni secara teoritis dapat dijelaskan dengan kecepatan osilasi atau frekuensi yang diukur dalam Hertz (Hz) dan amplitudo atau kenyaringan bunyi dengan pengukuran dalam desibel.
Manusia mendengar bunyi saat gelombang bunyi, yaitu getaran di udara atau medium lain, sampai ke gendang telinga manusia. Batas frekuensi bunyi yang dapat didengar oleh telinga manusia kira-kira dari 20 Hz sampai 20 kHz pada amplitudo umum dengan berbagai variasi dalam kurva responsnya. Suara di atas 20 kHz disebut ultrasonik dan di bawah 20 Hz disebut infrasonik.

Gema

Gema terjadi jika bunyi dipantulkan oleh suatu permukaan, seperti tebing pegunungan, dan kembali kepada kita segera setelah bunyi asli dikeluarkan. Kejernihan ucapan dan musik dalam ruangan atau gedung konser tergantung pada cara bunyi bergaung di dalamnya. Bunyi atau suara adalah kompresi mekanikal atau gelombang longitudinal yang merambat melalui medium. Medium atau zat perantara ini dapat berupa zat cair, padat, gas. Jadi, gelombang bunyi dapat merambat misalnya di dalam air, batu bara, atau udara jadi, gema adalah gelombang pantul/ reaksi dari gelombang yang dipancarkan bunyi.

Gelombang bunyi

Gelombang bunyi terdiri dari molekul-molekul udara yang bergetar maju-mundur. Tiap saat, molekul-molekul itu berdesakan di beberapa tempat, sehingga menghasilkan wilayah tekanan tinggi, tapi di tempat lain merenggang, sehingga menghasilkan wilayah tekanan rendah. Gelombang bertekanan tinggi dan rendah secara bergantian bergerak di udara, menyebar dari sumber bunyi. Gelombang bunyi ini menghantarkan bunyi ke telinga manusia,Gelombang bunyi adalah gelombang longitudinal.

Kecepatan bunyi

Bunyi merambat di udara dengan kecepatan 1.224 km/jam. Bunyi merambat lebih lambat jika suhu dan tekanan udara lebih rendah. Di udara tipis dan dingin pada ketinggian lebih dari 11 km, kecepatan bunyi 1.000 km/jam. Di air, kecepatannya 5.400 km/jam, jauh lebih cepat daripada di udara Rumus mencari cepat rambat bunyi adalah v=s:t Dengan s panjang Gelombang bunyi dan t waktu

Resonansi

Suatu benda, misalnya gelas, mengeluarkan nada musik jika diketuk sebab ia memiliki frekuensi getaran alami sendiri. Jika kita menyanyikan nada musik berfrekuensi sama dengan suatu benda, benda itu akan bergetar. Peristiwa ini dinamakan resonansi. Bunyi yang sangat keras dapat mengakibatkan gelas beresonansi begitu kuatnya sehingga pecah.

Listrik


Petir adalah contoh listrik alami yang paling dramatis
Kelistrikan adalah sifat benda yang muncul dari adanya muatan listrik. Listrik, dapat juga diartikan sebagai berikut:
  • Listrik adalah kondisi dari partikel subatomik tertentu, seperti elektron dan proton, yang menyebabkan penarikan dan penolakan gaya di antaranya.
  • Listrik adalah sumber energi yang disalurkan melalui kabel. Arus listrik timbul karena muatan listrik mengalir dari saluran positif ke saluran negatif.
Bersama dengan magnetisme, listrik membentuk interaksi fundamental yang dikenal sebagai elektromagnetisme. Listrik memungkinkan terjadinya banyak fenomena fisika yang dikenal luas, seperti petir, medan listrik, dan arus listrik. Listrik digunakan dengan luas di dalam aplikasi-aplikasi industri seperti elektronik dan tenaga listrik.

Sifat-sifat listrik

Listrik memberi kenaikan terhadap 4 gaya dasar alami, dan sifatnya yang tetap dalam benda yang dapat diukur. Dalam kasus ini, frase "jumlah listrik" digunakan juga dengan frase "muatan listrik" dan juga "jumlah muatan". Ada 2 jenis muatan listrik: positif dan negatif. Melalui eksperimen, muatan-sejenis saling menolak dan muatan-lawan jenis saling menarik satu sama lain. Besarnya gaya menarik dan menolak ini ditetapkan oleh hukum Coulomb. Beberapa efek dari listrik didiskusikan dalam fenomena listrik dan elektromagnetik.
Satuan unit SI dari muatan listrik adalah coulomb, yang memiliki singkatan "C". Simbol Q digunakan dalam persamaan untuk mewakili kuantitas listrik atau muatan. Contohnya, "Q=0,5 C" berarti "kuantitas muatan listrik adalah 0,5 coulomb".
Jika listrik mengalir melalui bahan khusus, misalnya dari wolfram dan tungsten, cahaya pijar akan dipancarkan oleh logam itu. Bahan-bahan seperti itu dipakai dalam bola lampu (bulblamp atau bohlam).
Setiap kali listrik mengalir melalui bahan yang mempunyai hambatan, maka akan dilepaskan panas. Semakin besar arus listrik, maka panas yang timbul akan berlipat. Sifat ini dipakai pada elemen setrika dan kompor listrik.

Berkawan dengan listrik

Listrik mengalir dari saluran positif ke saluran negatif. Dengan listrik arus searah jika kita memegang hanya kabel positif (tapi tidak memegang kabel negatif), listrik tidak akan mengalir ke tubuh kita (kita tidak terkena strum). Demikian pula jika kita hanya memegang saluran negatif.
Dengan listrik arus bolak-balik, Listrik bisa juga mengalir ke bumi (atau lantai rumah). Hal ini disebabkan oleh sistem perlistrikan yang menggunakan bumi sebagai acuan tegangan netral (ground). Acuan ini, yang biasanya di pasang di dua tempat (satu di ground di tiang listrik dan satu lagi di ground di rumah). Karena itu jika kita memegang sumber listrik dan kaki kita menginjak bumi atau tangan kita menyentuh dinding, perbedaan tegangan antara kabel listrik di tangan dengan tegangan di kaki (ground), membuat listrik mengalir dari tangan ke kaki sehingga kita akan mengalami kejutan listrik ("terkena strum").
Listrik dapat disimpan, misalnya pada sebuah aki atau batere. Listrik yang kecil, misalnya yang tersimpan dalam batere, tidak akan memberi efek setrum pada tubuh. Pada aki mobil yang besar, biasanya ada sedikit efek setrum, meskipun tidak terlalu besar dan berbahaya. Listrik mengalir dari kutub positif batere/aki ke kutub negatif.
Sistem listrik yang masuk ke rumah kita, jika menggunakan sistem listrik 1 fase, biasanya terdiri atas 3 kabel:
  • Pertama adalah kabel fase yang merupakan sumber listrik bolak-balik (positif dan negatifnya berbolak-balik terus menerus). Kabel ini adalah kabel yang membawa tegangan dari pembangkit tenaga listrik (PLN misalnya); kabel ini biasanya dinamakan kabel panas (hot), dapat dibandingkan seperti kutub positif pada sistem listrik arus searah (walaupun secara fisika adalah tidak tepat).
  • Kedua adalah kabel netral. Kabel ini pada dasarnya adalah kabel acuan tegangan nol, yang biasanya disambungkan ke tanah di pembangkit tenaga listrik (di kantor PLN misalnya); dapat dibandingkan seperti kutub negatif pada sistem listrik arus searah; jadi jika listrik ingin dialirkan ke lampu misalnya, maka satu kaki lampu harus dihubungkan ke kabel fase dan kaki lampu yang lain dihubungkan ke kabel netral; jika dipegang, kabel netral biasanya tidak menimbulkan efek strum yang berbahaya, namun karena ada kemungkinan perbedaan tegangan antara acuan nol di kantor PLN dengan acuan nol di lokasi kita, ada kemungkinan si pemegang merasakan kejutan listrik. Dalam kejadian-kejadian badai listrik luar angkasa (space electrical storm) yang besar, ada kemungkinan arus akan mengalir dari acuan tanah yang satu ke acuan tanah lain yang jauh letaknya. Fenomena alami ini bisa memicu kejadian mati lampu berskala besar.
  • Ketiga adalah kabel tanah atau Ground. Kabel ini adalah acuan nol di lokasi pemakai, yang biasanya disambungkan ke tanah di rumah pemakai; kabel ini benar-benar berasal dari logam yang ditanam di tanah dekat rumah kita; kabel ini merupakan kabel pengamanan yang biasanya disambungkan ke badan (chassis) alat2 listrik di rumah untuk memastikan bahwa pemakai alat tersebut tidak akan mengalami kejutan listrik. Walaupun secara teori, acuan nol di rumah (kabel tanah ini) harus sama dengan acuan nol di kantor PLN (kabel netral), kabel tanah seharusnya tidak boleh digunakan untuk membawa arus listrik (misalnya menyambungkan lampu dari kabel fase ke kabel tanah). Tindakan ceroboh seperti ini hanya akan mengundang bahaya karena chassis alat-alat listrik di rumah tersebut mungkin akan memiliki tegangan tinggi dan akan menyebabkan kejutan listrik bagi pemakai lain. Pastikan teknisi listrik anda memasang kabel tanah di sistem listrik di rumah. Pemasang ini penting, karena merupakan syarat mutlak bagi keselamatan anda dari bahaya kejutan listrik yang bisa berakibat fatal dan juga beberapa alat-alat listrik yang sensitif tidak akan bekerja dengan baik jika ada induksi listrik yang muncul di chassisnya (misalnya karena efek arus Eddy).

Unit-unit listrik SI

edit Unit-unit elektromagnetisme SI
Simbol Nama kuantitas Unit turunan
Unit dasar
I Arus ampere A A
Q Muatan listrik, Jumlah listrik coulomb C A·s
V Perbedaan potensial volt V J/C = kg·m2·s−3·A−1
R, Z Tahanan, Impedansi, Reaktansi ohm Ω V/A = kg·m2·s−3·A−2
ρ Ketahanan ohm meter Ω·m kg·m3·s−3·A−2
P Daya, Listrik watt W V·A = kg·m2·s−3
C Kapasitansi farad F C/V = kg−1·m−2·A2·s4

Elastisitas reciprocal farad F−1 V/C = kg·m2·A−2·s−4
ε Permitivitas farad per meter F/m kg−1·m−3·A2·s4
χe Susceptibilitas listrik (dimensionless) - -

Konduktansi, Admitansi, Susceptansi siemens S Ω−1 = kg−1·m−2·s3·A2
σ Konduktivitas siemens per meter S/m kg−1·m−3·s3·A2
H Medan magnet, Kekuatan medan magnet ampere per meter A/m A·m−1
Φm Flux magnet weber Wb V·s = kg·m2·s−2·A−1
B Kepadatan medan magnet, Induksi magnet, Kekuatan medan magnet tesla T Wb/m2 = kg·s−2·A−1

Reluktansi ampere-turns per weber A/Wb kg−1·m−2·s2·A2
L Induktansi henry H Wb/A = V·s/A = kg·m2·s−2·A−2
μ Permeabilitas henry per meter H/m kg·m·s−2·A−2
χm Susceptibilitas magnet (dimensionless) - -